- 1. Identify and label all of the symmetry elements for the following species. Indicate whether the molecule is chiral or achiral based on the symmetry elements identified.
 - (a) *trans*-1,2-difluoroethene
 - (b) cis-1,2-difluoroethene
 - (c) iodobenzene
 - (d) trans-1,2-dibromocyclopropane
- 2. Assign point groups for the following. For cases in which the structure is not drawn, assume the lowest energy conformation.
 - (a) HF

- (b) NH₃
- (c) Toluene
- (d) 0=C=C=C=0

- (e) cubane
- (f) $W(CO)_6$
- (g) Benzene
- (h) adamantane

(i) P₄

- (j) Naphthalene
- (k) p-bond
- (l) p-antibond

- 3. Cl_2 has a Cl–Cl bond length of 1.988 Å while that for Cl_{2^+} is 1.8917 Å. Use Molecular Orbital Theory to rationalize these metrics and determine the bond order for each of these molecules.
- 4. Prepare a molecular orbital energy diagram for the cyanide ion (CN-). Please be sure to label all atomic orbitals and molecular orbitals. Provide sketches to show how atomic orbitals interact to form MOs.
 - a. Based on the MO diagram you prepared, what is the bond order of CN-? What is the multiplicity of CN-?
 - b. Which molecular orbital of cyanide would you predict to interact most strongly with a proton in the acid-base reaction $CN^- + H^+ \rightarrow HCN$? Please explain your answer.

- 5. Write a Lewis electron-dot structure for N_3 . Predict its molecular shape using the VSEPR method. Discuss the electronic structure N_3 in terms of hybridization at the central nitrogen atrom and the number of σ and π electrons. How many unpaired electrons are there? Is the molecule polar? Predict the relative bond lengths in N_2 and N_3 .
- 6. We have discussed each of the following physical methods in class. Briefly describe the type of bonding/structural information each method affords.
 - (a) X-Ray Diffraction
 - (b) XANES
 - (c) Microwave Spectroscopy
 - (d) IR Spectroscopy